On the Dirichlet problem for Hessian equations
نویسندگان
چکیده
منابع مشابه
On the exterior Dirichlet problem for Hessian equations
In this paper, we establish a theorem on the existence of the solutions of the exterior Dirichlet problem for Hessian equations with prescribed asymptotic behavior at infinity. This extends a result of Caffarelli and Li in [3] for the MongeAmpère equation to Hessian equations.
متن کاملThe Dirichlet problem for Hessian equations on Riemannian manifolds
on a Riemannian manifold (M n , g), where f is a symmetric function of λ ∈ R , κ is a constant, ∇2u denotes the Hessian of a function u on M and, for a (0, 2) tensor h on M , λ(h) = (λ1, · · · , λn ) denotes the eigenvalues of h with respect to the metric g. The Dirichlet problem for equations of type (1.1) in R , with κ = 0, under various hypothesis, is studied by Caffarelli, Nirenberg and Spr...
متن کاملHessian Equations with Infinite Dirichlet Boundary Value
In this paper, we will show the existence and non-existence of Hessian equations with infinite Dirichlet boundary value conditions. KewwordsHessian equation, k-convex solution, singular boundary value, existence/nonexistence, viscous solution. The research was supported by the National 973-Project from MOST and Trans-Century Training Programme Foundation for the Talents by the MOE. The work was...
متن کاملThe Dirichlet Problem for Nonuniformly Elliptic Equations
and repeated indices indicate summation from 1 to n. The functions a'(x, u, p), a(x, u, p) are defined in QX£ n + 1 . If furthermore for any ikf>0, the ratio of the maximum to minimum eigenvalues of [a(Xy u, p)] is bounded in ÛX( — M, M)XE, Qu is called uniformly elliptic. A solution of the Dirichlet problem Qu = Q, u—<f)(x) on <50 is a C(n)P\C(O) function u(x) satisfying Qu = 0 in £2 and agree...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1995
ISSN: 0001-5962
DOI: 10.1007/bf02393303